
Infrastructure for Automatic Dynamic Deployment
of J2EE Applications in Distributed Environments

CIMS Technical Report: TR2005-867

Anatoly Akkerman, Alexander Totok, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY, USA
{akkerman,totok,vijayk}@cs.nyu.edu

Abstract

Recent studies showed potential for using component frameworks for building flexible adaptible applications for deploy-
ment in distributed environments. However this approach is hindered by the complexity of deployment of component-based
applications, which usually involves a great deal of configuration of both the application components and system services
they depend on. In this paper we propose an infrastructure for automatic dynamic deployment of J2EE applications, that
specifically addresses the problems of (1) inter-component connectivity specification and its effects on component configu-
ration and deployment; and (2) application component dependencies on application server services, their configuration and
deployment. The proposed infrastructure provides simple yet expressive abstractions for potential application adaptation
through dynamic deployment and undeployment of components. We implement the infrastructure as a part of the JBoss J2EE
application server and test it on several sample J2EE applications.

1 Introduction

In recent years, we have seen a significant growth in component-based enterprise application development. These applications
are typically deployed on company Intranets or on the Internet and are characterized by high transaction volume, large
numbers of users and wide area access. Traditionally they are deployed in a central location, using server clustering with load
balancing (horizontal partitioning) to sustain user load. However, horizontal partitioning has been shown very efficient only
in reducing application-related overheads of user-perceived response times, without having much effect on network-induced
latencies. Vertical partitioning (e.g., running web tier and business tier in separate VMs) has been used for fault isolation
and load balancing but it is sometimes impractical due to significant run-time overheads (even if one would keep the tiers on
a fast local-area network) related to heavy use of remote invocations. Recent work [14] in the context of J2EE component-
based applications has shown viability of vertical partitioning in wide-area networks without incurring the aforementioned
overheads. The key conclusions from that study can be summarized as follows:

• Using properly designed applications, vertical distribution across wide-area networks improves user-perceived laten-
cies.

• Wide-area vertical layering requires replication of application components and maintaining consistency between repli-
cas.

• Additional replicas may be deployed dynamically to handle new requests.

• Different replicas may, in fact, be different implementations of the same component based on usage (read-only, read-
write).

• New request paths may reuse components from previously deployed paths.

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Infrastructure for Automatic Dynamic Deployment of J2EE Applications
in Distributed Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Applying intelligent monitoring [6] and AI planning [2, 12] techniques in conjunction with the conclusions of that study,
we see a potential for dynamic adaptation in industry-standard J2EE component-based applications in wide area networks
through deployment of additional application components dynamically based on active monitoring.

However, in order to achieve such dynamic adaptation, we need an infrastructure for automating J2EE application deploy-
ment in such an environment. This need is quite evident to anyone who has ever tried deploying a J2EE application even on a
single application server, which is a task that involves a great deal of configuration of both the system services and application
components. For example one has to set up JDBC data sources, messaging destinations and other resource adapters before
application components can be configured and deployed. In a wide area deployment that spans multiple server nodes, this
proves even more complex, since more system services that facilitate inter-node communications need to be configured and
started and a variety of configuration data, like IP addresses, port numbers, JNDI names and others have to be consistently
maintained in various configuration files on multiple nodes.

This distributed deployment infrastructure must be able to:

• address inter-component connectivity specification and define its effects on component configuration and deployment,

• address application component dependencies on application server services, their configuration and deployment,

• provide simple but expressive abstractions to control adaptation through dynamic deployment and undeployment of
components,

• enable reuse of services and components to maintain efficient use of network nodes’ resources,

• provide these facilities without incurring significant additional design effort on behalf of application programmers.

In this paper we propose the infrastructure for automatic dynamic deployment of J2EE applications, that addresses all
of the aforementioned issues. The infrastructure defines architecture description languages (ADL) for component and link
description and assembly. TheComponent Description Languageis used to describe application components and links.
It provides clear separation of application components from system components. A flexible type system is used to define
compatibility of component ports and links. A declaration and expression language forconfigurable component properties
allows for specification of inter-component dependencies and propagation of properties between components. TheCompo-
nent (Replica) Assembly Languageallows for assembly of replicas of previously defined components into application paths by
connecting appropriate ports via link replicas and specifying the mapping of these component replicas onto target application
server nodes. TheComponent Configuration Processevaluates an application path’s correctness, identifies the dependencies
of application components on system components, and configures component replicas for deployment. An attempt is made
to match and reuse any previously deployed replicas in the new path based on their configurations.

We implement the infrastructure as a part of the JBoss open source Java application server [11] and test it on several
sample J2EE applications – Java PetStore [23], RUBiS [20] and TPC-W-NYU [32]. The infrastructure implementation
utilizes the JBoss’s extendablemicro-kernelarchitecture, based on the JMX [27] specification. Componentized architecture
of JBoss allows incremental service deployments depending on the needs of deployed applications. We believe that dynamic
reconfiguration of application servers through dynamic deployment and undeployment of system services is essential to
building a resource-efficient framework for dynamic distributed deployment of J2EE applications.

The rest of the paper is organized as follows. Section 2 provides necessary background for understanding the specifics of
the J2EE component technology which are relevant to this study. Section 3 gives a general description of the infrastructure
architecture, while section 4 goes deeper in describing particularily important and interesting internal mechanisms of the
infrastructure. Section 5 describes the implementation of the framework, and related work is discussed in section 6.

2 J2EE Background

2.1 Introduction

Component frameworks. A component framework is a middleware system that supports applications consisting of com-
ponents conforming to certain standards. Application components are “plugged” into the component framework, which
establishes their environmental conditions and regulates the interactions between them. This is usually done throughcontain-
ers, component holders, which also provide commonly required support for naming, security, transactions, and persistence.

2

EIS TierBusiness (EJB) TierWeb Tier

JSP

Java
Servlet

RMI

Stateless
Session

Bean

Entity
Bean

Stateful
Session

Bean

Entity
BeanRMI

RMI
RDBMS

ERP

Client

HTML HTTP(S)

Client

HTML
HTTP(S)

JCARMI RMI

Figure 1: J2EE 3-Tier architecture.

Component frameworks provide an integrated environment for component execution, as a result significantly reduce the ef-
fort it takes to design, implement, deploy, and maintain applications. Current day industry component framework standards
are represented by Object Management Group’s CORBA Component Model [18], Sun Microsystems’ Java 2 Platform Enter-
prise Edition (J2EE) [25] and Microsoft’s .NET [17], with J2EE being currently the most popular and widely used component
framework in the enterprise arena.

J2EE. Java 2 Platform Enterprise Edition (J2EE) [25] is a comprehensive standard for developing multi-tier enterprise Java
applications. The J2EE specification among other things defines the following:

• component programming model,

• component contracts with the hosting server,

• services that the platform provides to these components,

• various human roles,

• compatibility test suites and compliance testing procedures.

Among the list of services that a compliant application server must provide are messaging, transactions, naming and others
that can be used by the application components.

Application developed using J2EE adhere to the classical 3-Tier architechture –Presentation Tier, Business Tier, and
Enterprise Information System (EIS) Tier(see Fig. 1). J2EE components belonging to each tier are developed adhering to the
specific J2EE standards.

1. Presentation or Web tier.

This tier is actually subdivided into client and server sides. The client side hosts a web browser, applets and Java
applications that communicate with the server side of presentation tier or the business tier. The server side hosts Java
Servlet components [30], Java Server Pages (JSPs) [29] and static web content. These components are responsible for
presenting business data to the end users. The data itself is typically acquired from the business tier and sometimes
directly from the Enterprise Information System tier. The server side of the presentation tier is typically accessed
through HTTP(S) protocol.

2. Business or EJB tier.

This tier consists of Enterprise Java Beans (EJBs) [24] that model the business logic of the enterprise application. These
components provide persistence mechanisms and transactional support. The components in the EJB tier are invoked

3

through remote invocations (RMI), in-JVM invocations or asynchronous message delivery, depending on the type of
EJB component.

The EJB specification defines several types of components. They differ in invocation style (synchronous vs. asyn-
chronous, local vs. remote) and statefulness: completely stateless (e.g., Message-Driven Bean), stateful non-persistent
(e.g., Stateful Session Bean), stateful persistent (e.g., Entity Bean). Synchronously invocable EJB components expose
themselves through a special factory proxy object (anEJB Homeobject, which is specific to a given EJB), which is
typically bound in JNDI by the deployer of the EJB. The EJB Home object allows creation or location of anEJB
Object, which is a proxy to a particular instance of a this EJB1.

3. Enterprise Information System (EIS) or Data tier.

This tier refers to the enterprise information systems, like relational databases, ERP systems, messaging systems and
the like. Business and presentation tier component communicate with this tier with the help of resource adapters as
defined by the Java Connector Architecture [26].

The J2EE programming model has been conceived as a distributed programming model where application components
would run in J2EE servers and communicate with each other. After the initial introduction and first server implementations,
the technology, most notably, the EJB technology, has seen some a significant shift away from purely distributed computing
model towards local interactions2. There were very legitimate performance-related reasons behind this shift, however the
distributed features are still available.

The J2EE specification has seen several revisions, the latest stable being version 1.3, while version 1.4 is going through
last review phases3. We shall focus our attention on the former, while actually learning from the latter.

Compliant commercial J2EE implementations are widely available from BEA Systems [4], IBM [9], Oracle [21] and
other vendors. Several open source implementations, including JBoss [11] and JOnAS [19] claim compatibility as well. A
recent addition to the list is a new Apache project Geronimo [1].

2.2 J2EE Component Programming Model

Before we describe basic J2EE components, let’s first address the issue of defining what a component is.

A software component is a unit of composition with contractually specified interfaces and explicit con-
text dependencies only. A software component can be deployed independently and is subject to com-
position by third parties [31].

According to this definition the following entities which make up a typical J2EE application would be considered application
components (some exceptions given below):

• EJBs (session, entity, message-driven),

• Web components (servlets, JSPs),

• messaging destinations,

• data sources,

EJB and Web components are deployed into their corresponding containers provided by the application server vendor. They
have well-defined contracts with their containers that govern lifecycle, threading, persistence and other concerns. Both Web
and EJB components use JNDI lookups to locate resources or other EJB components they want to communicate with. The
JNDI context in which these lookups are performed is maintained separately for each component by its container. Bindings
in this context are typically configured by the component’s deployment descriptors.

1A deployment of an EJB component may contain multiple instances of an EJB. For example, during an online store application lifetime, a deployment
of a stateful session bean that holds contents of an online shopping cart may consist of several instances of the shopping cart bean, one for each shopper
currently shopping on the site. Similarly, an entity bean that holds persistent user account information has a unique instance corresponding to each account
number on record. Please, refer to relevant sections in the EJB [24] and J2EE [25] documentation for more detail.

2This transition occurred with introduction of local interfaces and container managed relations in the EJB specification version 2.0.
3J2EE specification version 1.3 was the latest stable specification at the moment this project was started.

4

Messaging destinations, such as topics and queues, are resources provided by a messaging service implementation. Data
sources are resources provided by the application server for data access by business components into the enterprise infor-
mation services (data) tier, and most commonly are exemplified by JDBC connection pools managed by the application
server.

A J2EE programmer explicitly programs only EJBs and Web components. These custom-written components interact
with each other and system services both implicitly and explicitly. For example, an EJB developer may choose explicit trans-
action demarcation (i.e., Bean-Managed Transactions) which means that the developer assumes the burden of writing explicit
programmatic interaction with the platform’sTransactionManagerservice through well-defined interfaces. Alternatively, the
developer may choose Container-Managed transaction demarcation, where transactional behavior of a component is defined
through its descriptors and handled completely by the EJB container, thus acting as an implicit dependency of the EJB on the
underlyingTransactionManagerservice.

2.3 Links Between Components

2.3.1 Remote Interactions

J2EE defines only three basic inter-component connection types that can cross application server boundaries, in all three
cases, communication is accomplished through special Java objects.

• Remote EJB invocation :synchronous EJB invocations through EJB Home and EJB Object interfaces.

• Java Connector outbound connection :synchronous message receipt, synchronous and asynchronouse message send-
ing, database query using ConnectionFactory and Connection interfaces.

• Java Connector inbound connection :asynchronous message delivery into Message-Driven Beans (MDBs) only, uti-
lizing ActivationSpec objects.

In the first two cases, an application component developer writes the code that performs lookup of these objects in the
component’s run-time JNDI context as well as code that issues method invocations or sends and receives messages to and
from the remote component. The component’s run-time JNDI context is created for each deployment of the component.
Bindings in the context are initialized at component deployment time by the deployer (usually by means of component’s
deployment descriptors). These bindings are assumed to be static, since the specification does not provide any contract
between the container and the component to inform of any binding changes.

In the case of Java Connector inbound communication, ActivationSpec object lookup and all subsequent interactions with
it are done implicitly by the MDB container. The protocol for lookup has not been standardized, though it is reasonable to
assume a JMX- or JNDI-based lookup.

Assuming the underlying application server provides facilities to control each step of deployment process, establishment
of a link between J2EE components would involve:

• deployment of target component classes (optional for some components, like destinations),

• creation of a special Java object to be used as a target component’s proxy,

• binding of this object with component’s host naming service (JNDI or JMX),

• start of the target component,

• deployment of referencing component classes,

• creation and population of referencing component’s run-time context in its host naming service,

• start of the referencing component.

However, none of modern application servers allow detailed control of the deployment process for all component types
beyond what is possible by limited options in their deployment descriptors4. Therefore our infrastructure will use a simplified
approach that relies on features currently available on most application servers:

4For example, creation of EJB Home objects is usually automatically handled by the container, as well as its binding into JNDI. Some servers, notably
JBoss, allow creating custom multiple EJB Home objects (utilizing different remote invocation transport protocols) for a single EJB deployment, however
their deployment is still coupled with deployment of the component itself. Ideally, one should be able to deploy the EJB component and then dynamically
deploy any number of transport-specific EJB Home objects.

5

• ability to deploy messaging destinations and data sources dynamically,

• ability to create and bind into JNDI special objects to access messaging destinations and data sources,

• ability to specify initial binding of EJB Home objects upon EJB component deployment,

• ability to specify a JNDIreference5 in the referencing component’s run-time context to point to the EJB Home binding
of the referenced EJB component.

In our infrastructure which is limited to homogeneous application servers, these options are sufficient to control inter-
component links through simple deployment descriptor manipulation. However, in context of heterogeneous application
servers, simple JNDI references and thus simple descriptor manipulation are insufficient due to cross-application-server
classloading issues.

2.3.2 Local Interactions

Some interactions between components can occur only between components co-located in the same application server JVM
and sometimes only in the same container. In the Web tier, examples of such interactions are servlet-to-servlet request
forwarding. In the EJB tier, such interactions are CMP Entity relations and invocations via EJB local interfaces. Such
local deployment concerns need not be exposed at the level of a distributed deployment infrastructure other than to ensure
colocation. Therefore, the infrastructure treats all components requiring colocation as a single component.

2.4 Deployment of J2EE Applications and System Services

2.4.1 Deployment of Application Components

Deployment and undeployment of standard J2EE components has not yet been standardized (see JSR 88 [10] for standard-
ization effort 6). Therefore, each application server vendor provides proprietary facilities for component deployment and
undeployment. And while the J2EE specification does define packaging of standard components which includes format
and location of XML-based deployment descriptors within the package, this package is not required to be deployable by an
application server without proprietary transformation. Examples of such transformation are

• generation of additional proprietary descriptors that supplement or replace the standard ones,

• code generation of application server-specific classes.

In order to proceed with building a dynamic distributed deployment infrastructure capable of deploying in heterogeneous
networks, we propose a universal unit of deployment to be a single XML-based deployment descriptor or a set of such,
bundled into an archive. The archive may optionally include Java classes that implement the component and any other
resources that the component may need. Alternatively, the deployment descriptors may simply have URL references to
codebases.

We assume presence of a dynamic deployment/undeployment service on all compliant J2EE servers and a robust appli-
cation server classloading architecture capable of repeated deployment cycles without undesired classloading-related issues.
Most modern application servers (e.g., JBoss [11] and Geronimo [1]) do provide such facilities.

2.4.2 Deployment of System Components (Services)

While lacking only in the area of defining a clear specification of deployment and undeployment when it comes to application
components, the J2EE standard falls much shorter with respect to system services. Not only a standardized deployment
facility for system services is not specified, the specification, in fact, places no requirements even on life cycle properties of
these services, nor does it address the issue of explicit specification of application component dependencies on the underlying
system services. Instead it defines a role of human deployer who is responsible for ensuring that the required services are
running based on his/her understanding of dependencies of application components on system services as implied by the
nature of components and their deployment descriptors.

5A JNDI referenceis a binding that automatically redirects any lookups to another JNDI binding, possibly on a different JNDI server. Please, refer to
JNDI documentation [28] for more details.

6JSR 88 later became J2EE Application Component Deployment Specification and was introduced in J2EE specification version 1.4.

6

For example, an EJB with container managed transactions that declares at least one method that supports/requires/starts
a new transaction would require presence of aTransactionManagerservice in the application server. Similarly, a message-
driven bean implicitly requires an instance of a messaging service running somewhere in the network that hosts the messaging
destination for the MDB and a Java Connector based hook-up from within its hosting application server to this messaging
service.

Given that applications would typically use only a subset of services provided by an application server, componentized
application servers that allow incremental service deployments depending on the needs of the application allow for most
efficient utilization of server resources. There are several J2EE application servers that are already fully or partially com-
ponentized, including open source application servers JBoss [11] and JOnAS [19]. We feel that dynamic reconfiguration of
application servers through dynamic deployment and undeployment of system services is essential to building a resource-
efficient framework for dynamic distributed deployment of J2EE applications. Therefore we advocate and will use as a
model a micro-kernel application server design used by the JBoss application server [8]. In this model a minimal server
consists of a service invocation bus, a robust classloading subsystem, some naming subsystem and a dynamic deployment
subsystem. All other services are hot-deployable and communicate through a common invocation bus. For example, JBoss
utilizes a Java Management Extensions (JMX) [27] server that provides basic naming and invocation facilities. In addition
JBoss implements an advanced classloading subsystem and a deployment service. All other JBoss services are dynamically
deployable and expose themselves as JMX MBeans with well defined (un-)deployment mechanism and lifecycle. Such an
application server design facilitates explicit handling of application component dependencies on system services and proper
configuration and deployment of only required system services.

3 Infrastructure Architecture

3.1 Useful Definitions

Application server node, network node, target node or simply nodeis a computer system or a cluster of computers that
run an instance of the infrastructure-controlled application server.

Application path is an abstraction that represents a deployment (potential or actual) of application component replicas on
infrastructure nodes such that these replicas are configured to properly communicate with each other preserving original
application semantics even in presence of other application paths for the same application.

Deployment specification is a description of a application paths as used by the infrastructure. It is written in the infrastructure-
defined language and can be written manually, constructed by a planning algorithm or generated from a visual repre-
sentation of an application path using special visual editors.

Component replica is a deployment of a component. There could be multiple deployments of the same component on
different nodes and with different configurations. However, multiple replicas of stateful components may require state
consistency management between replicas.

Link is an abstraction of connectivity between two components.

Link replica is an instance of a link used to connect specific ports of specific component replicas in a deployment specifica-
tion.

3.2 Overview

The infrastructure consists of a network containing multiple application server nodes. Each application server node runs an
infrastructure-controlledAgent Service. These agents communicate with an instance of aReplication Management Service
(consisting ofComponent Registry, Replica ConfigurationandReplica Deployment Services) running on one network node
(which can be dedicated). In principle, these services can be replicated to allow the infrastructure to scale, however, the
current version of the infrastructure has not focused on the associated consistency issues. In addition, aDeployment Unit
Factory Service(one or many) runs on some subset of the nodes (see Fig. 2).

The infrastructure defines architecture description languages (ADL) for component and link description and assembly.
Main features of theComponent Description Languageare (1) a clear separation of system components from application

7

Agent
Service

Deployment Unit
Factory Service

JBoss

Replication Management Service

Replica
Configuration

Service

Component
Registry
Service

Replica
Deployment

Service

Persistent
Storage

store info

register app

Agent
Service JBoss Agent

Service

Deployment Unit
Factory Service

JBoss Agent
Service JBoss

prepare path

deploy path

Figure 2: Infrastructure architecture.

components, (2) a flexible type system for component ports and links, (3) the ability to specify dependencies of both appli-
cation and system components on other system components, and (4) a declaration and expression language for configurable
component properties. TheComponent (Replica) Assembly Languageallows for assembly of replicas of previously defined
components into application paths by connecting appropriate ports via link replicas and specifying the mapping of these
component replicas onto target application server nodes.

3.3 Infrastructure Usage

The usage of the infrastructure can be divided in the following set of steps (see also Fig. 2):

1. Initialization. The infrastructure is initialized with a description of available network nodes. This description is
supplied by a network administrator, alternatively, the nodes may be configured to register themselves with the infras-
tructure and provide sufficient information about themselves.

2. System components and application registration.The infrastructure has to be initialized with descriptions of system
and application components as well as links prior to any requests for deployment of replicas of these components.
Multiple applications can be registered with the infrastructure at any time, as long as they have unique names. These
descriptions (written in the Component Description Language) are registered with theComponent Registry Service. It
is expected that an application server provider prepares and registers a description of system services (system compo-
nents) and links that are available for dynamic deployment on compatible target nodes, while the application vendor
prepares a description of application components.

3. Writing Deployment Path Specification. The application deployer writes a deployment path specification in the
Component Assembly Language. In it s/he specifies the placement of components (system and application) on the
target nodes and links that connect them. The deployer may choose to write the specification by hand, or to use the

8

GUI path editing tool, which also serves as a user-friendly portal to the Replication Management Service. Figure 3
shows the GUI tool with a two-host distributed deployment of Java PetStore [23], one of the sample J2EE applications
used in our experiments.

4. Preparing deployment path. After the initial registration, the infrastructure is ready to accept deployment requests.
First a deployment specification for an application path is submitted forpreparationto theReplication Management
Service. It performs initial validation and passes the deployment specification to theReplica Configuration Service.

The Replica Configuration Service, in turn attempts resolution of application component dependencies on system
components and recursively, dependencies of newly discovered system components on other system components. If
all component dependencies successfully resolve, the Configuration Service then configures each component replica.
During configuration, the Configuration Service attempts to match any previously deployed replicas to replicas in the
new path based on their configurations.

All new replica deployment configurations are then persistently stored and any matched replicas that exist in other
deployments are reused. This last step is sometimes calledcommitting prepared path. Both success or failure of
preparing the path are communicated back to the infrastructure user.

5. Deployment of prepared path. If path preparation and committing succeeded, the infrastructure client can subse-
quently request deployment of the prepared path. Upon a deployment request from the user, theReplica Deployment
Serviceissues deployment requests to appropriate agents on nodes involved in providing services for this path. These
agents, in turn, request deployable bundles of component replicas scheduled for deployment from aDeployment Unit
Factory Service, located on a nearby node.

For each requested component replica’s deployment bundle, the Deployment Unit Factory service locates the corre-
sponding replica configuration in the persistent storage and generates a properly configured deployment bundle. This
bundle is then shipped to the requesting agent. The agent, upon receiving all deployable bundles for components and
services scheduled for deployment on its node, deploys them in an order that respects deployment dependencies.

6. Management of deployed paths.The infrastructure maintains a registry of prepared paths, deployed paths and current
state of application and system component replica deployments. Clients may request undeployment of previously
deployed paths which will result in undeployment of component replicas that are exclusively used by the undeployed
path.

4 Infrastructure Internals

4.1 Component Description Language

The primary goal of theComponent Description Languageis to describe components and links. The components (both
system and application) and links are grouped into applications. An application defines a namespace for components and
links that it contains. Application names must be globally unique. Components and links are differentiated by names that
must be unique within the application. Absolute names of components are obtained by combining the application name with
the component name relative to its containing application.

The Component Description Language differentiates between links, system components and application components.
Application components are typically custom-developed for a given application, like web-tier and business-tier components
(e. g. servlets, JSPs and EJBs). System components are typically services or resources that are part of the underlying
application server, like JMS messaging service, transaction manager service, database service, and thus are usually shared by
several applications running in the same application service. Certain resources that are technically provided to the application
by system services are treated as application components, since they tend to represent resources that are in exclusive use by
the application, for example, JMS messaging destinations, data sources to databases, etc.

4.1.1 Ports

The most significant difference between the application components and system components from the point of view of the
Component Description Language is that application components declareports, while system components do not. Ports of
application components fall into two categories:requiredor implemented. Declaration of a required port in a component

9

Figure 3: The GUI path editing and Replication Management Client tool with a distributed two-host deployment of the Java
PetStore sample J2EE application.

10

description means that this component requires communication with another component. A declaration of an implemented
port mean that the component can accept communication from another component (which in turn must have a matching
required port). A port must have a unique name within each component description. It must also declare atypeand alink
type, these are used to check for semantic consistency of an assembly.

4.1.2 Port Type

Port type is a one of two mechanisms for assuring semantic consistency of component assembly. One can think of port
types as interfaces to the component functionality. Port types are used in typechecking deployment specifications, so that a
required port of one component replica with type P is connected to an implemented port of another component replica of
type T only if T is a subtype of P. The infrastructure may use a pluggable type system and each application may define its
own custom type system. The minimal requirements on a typesystem are that it implements checks for subtypes and exposes
proper typesystem interfaces defined by the infrastructure.

4.1.3 Port Link Type

Link types specify what link may connect this port to another port. It is the second mechanism for assuring semantic
consistency of a component assembly. The intuitive understanding of a link type is of a communication protocol through
which functionality of a component may be accessed. Port link type’s value must be a name of a well-defined link, known
to the infrastructure. Typically there are only a few link types defined by an application server provider, corresponding to the
three basic remote connectivity options available to components (see section 2.3.1).

4.1.4 Property Declaration Mechanism

Another feature of the Component Description Language is component and linkproperty declarationmechanisms. It allows
definition of adjustable component replica deployment configurations and at the same time expression of component depen-
dency on system components. Property values are always strings, they can be null, a constant string, or aproperty value
expressionwhich evaluates to a string. Null property values are special cases, their function will be discussed later. Constant
property values are simplest to understand, they remain constant for all replicas of the given component.

Properties of system components and links may be defined only in the component-wide or link-wide scopes. Application
component properties may be defined in component-wide scope or in subscopes for each of the component’s ports. The
same way that an application acts as a namespace for its components, so components themselves act as namespaces for
properties and ports, and ports act as namespaces for properties only. For example, ifmyOnlineStore application contains
a componentStoreFrontEJB that declares an implemented portInvocationPort , then

myOnlineStore corresponds to the full name of the application,

myOnlineStore.StoreFrontEJB is the full name of theStoreFrontEJB component,

myOnlineStore.StoreFrontEJB.InvocationPort is the full name of theInvocationPort implemented
port ofStoreFrontEJB component,

systemId@myOnlineStore.StoreFrontEJB is the full name ofsystemId property declared in the component-
wide scope of theStoreFrontEJB component,

JNDIBinding@myOnlineStore.StoreFrontEJB.InvocationPort is the full name ofJNDIBinding prop-
erty declared in theInvocationPort subscope of theStoreFrontEJB component, which is really the subscope
of the implemented port ofStoreFrontEJB .

Values of component’s properties are computed for each component replica and stored in areplica configurationduring
path preparation. More precisely, aconfigurationis a container for resolved property-value pairs from the corresponding
property scope. Thus, a component replica will have a configuration corresponding to the component-wide property scope
and a configuration for each of its ports. It can be queried for values of named properties and new property-value pairs can
be added to it.

For application component replicas, configurations corresponding to component-wide scope and port scope are linked
in a parent-child relationship for the purpose of property value query delegation. The delegation is from child to parent, so

11

that a failed lookup of a property in the port scope’s configuration is delegated to the component-wide scope’s configuration
and fails only if the parent configuration also does not have a value for the given property. For example, in case of the
StoreFrontEJB component, thesystemId property is declared in the component-wide scope and its property-value is
stored in the corresponding component-wide configuration and the configuration of theInvocationPort has no entry for
the systemId property. However, a lookup of thesystemId property against the configuration of theInvocationPort
port, would succeed, because of the child-to-parent delegation. This is very similar to standard programming languages that
allow nested scopes, where variables declared in the outer scopes are visible in the inner scopes.

A component replica’s configuration (possibly, with nested subconfigurations for its ports), filled with resolved property
values, completely defines this replica’s deployment configuration. This configuration is subsequently used by the infrastruc-
ture to configure this replica’s deployment descriptors.

4.1.5 Property Value Expression Language

The expression language for property values is very simple, it allows for concatenation of constant strings with values of
other properties (of the same component replica or other components and links). Backus-Naur definition of the expression
language is:

<CompositeExpression> ::= <SubExpression> |
<CompositeExpression><SubExpression>

<SubExpression> ::= <string> |
${<CompositeExpression> }|
${<CompositeExpression>@<Namespace> }

<Namespace> ::= <string>

The${... } operator is avalue of operator, which performs value lookup of a named property that is specified inside the
braces. Since all property values must be strings, the result of the lookup is a string that gets concatenated with preceding and
following subexpressions. Property name inside thevalue of operator may be of the form<name>@<namespace>, where
the@symbol separates the property name from the namespace in which the property is to be looked up. Alternatively, the
namespace may be omitted, then the lookup will be done in the same namespace that contains the property whose expression
is being evaluated.

4.1.6 Property Value Expression Example

Consider a componentmyOnlineStore.StoreFrontEJB that declares an implemented portInvocationPort and
in that port, it declares a propertyJNDIBinding . Thus, this property’s full name isJNDIBinding@myOnline-
Store.StoreFrontEJB.InvocationPort . Let’s say that the purpose of this property is to represent the JNDI name
under which the EJBObject of theStoreFrontEJB EJB component replica is to be bound in its hosting node’s JNDI.

<application name=" myOnlineStore ">
<component name=" StoreFrontEJB ">

<!--
All components implicitly define
systemId property.

-->
<implements>

<port name=" InvocationPort "
type=...
link-type=...>

<property name=" JNDIBinding ">
<!-- property value expression goes here -->

</property>
</port>

</implements>
...

12

</component>
</application>

Some possible value expressions for theJNDIBinding property and their explanations are:

storeFrontEJB : this is just a fixed string, the expression always evaluates tostoreFrontEJB , which means that all
replicas of this component will have the same value for this property. Since the value represents the name under which
a replica binds its EJBObject, thus all replicas of this component would try binding their EJBObjects into JNDI using
the same name, i.e./storeFrontEJB . This should not create any problems if all replicas get deployed on different
nodes and these nodes do not share JNDI namespaces. However, if two replicas end up on the same node and try to
bind themselves to the same name, this would create a binding conflict.

storeFrontEJB-$ {systemId } : this value would evaluate to a string of formstoreFrontEJB-14 , if value of
systemId property is14 , thus allowing creation of unique values for JNDI bindings to avoid binding conflicts.
Since lookup ofsystemId does not specify its namespaces, by default,systemId is looked up in themyOnline-
Store.StoreFrontEJB.InvocationPort namespace which is the namespace to whichJNDIBinding prop-
erty belongs. Even though thesystemId property is not declared in theInvocationPort scope but in the
component-wide scope, the lookup should succeed, due to child-to-parent delegation.

4.1.7 Component Dependency Mechanism Through Property Value Expressions

In this subsection we shall describe the mechanism for expressing inter-component dependencies through property value
expressions. As we have already described in section 4.1.5, value or a property may depend on values of properties from
other namespaces. Such external references to properties in namespaces other than the component’s own, is the mechanism
by which a component expresses dependency on a system component. Consider the following example of an application
component.

<component name="InventoryInvalidationTopic">
...
<implements>

<port name="DestinationPort"
type="InventoryInvalidationTopic"
link-type="jboss.system.jbossmq.DestinationLink">

<property name=" DestinationManagerObjName ">
${DestinationManagerMBeanName@jboss.system.jbossmq.Service }

</property>
</port>

</implements>
</component>

This descriptor snippet contains a declaration of propertyDestinationManagerObjName@jps.InventoryIn-
validationTopic.DestinationPort . Expression value for this property is just a lookup of another property value,
namelyDestinationManagerMBeanName@jboss.system.jbossmq.Service , which means that their values
must be the same. In this case, the referred namespace,jboss.system.jbossmq.Service , is in fact a name of a
system component. This reference means that theInventoryInvalidationTopic requires a replica ofjboss.sys-
tem.jbossmq.Service component running on the same node and it must be fully configured before we can properly
configure theInventoryInvalidationTopic component replica.

Last rule for SubExpression and definition of Namespace in the property value expression language (section 4.1.5) guar-
antees that referred namespaces can only be constants, therefore, what types of components a given component depends
on may be determined statically7 by analyzing the component’s description. This also allows the infrastructure to perform
additional component description validation through assertion of existence of component definitions of referred components.

If value expressions for several properties in the same scope (e.g., properties of one port) happen to refer to properties
from the same external namespace, the infrastructure treats this as a dependency on the same replica of the component with
name matching the external namespace.

7Note, however, that name of the property value which is being looked up in the external namespace can depend on values of other properties. This, in
conjuction with custom property value evaluators provides a very expressive configuration and dependency mechanism.

13

4.1.8 Property Value Propagation Mechanism

In the previous subsection we introduced the mechanism for expressing dependencies on system components through property
value expressions. In this subsection we discuss a closely related issue of property value propagation between components.
Imagine a situation that a component (Catalog , in our example) has a required port that points to another component
(Item). Link of type jboss.system.EJBLink (corresponding to the synchronous EJB invocation) connects these
components. In order to properly connect to theItem component, theCatalog component needs to know some properties
value from theItem component’s namespace, for example the JNDI name of theItem ’s Home Object.

We solve this problem by using certain mechanism of property value propagation between components, through
properties of the link connecting the components. Let see how it works in the above example. TheItem component
specifiesEJBObjectJNDI property of its implemented port:

<component name="Item">
<implements>

<port name="InvocationPort" type="Item"
link-type="jboss.system.EJBLink">

<property name=" EJBObjectJNDI ">
Item-$ {systemId }

</property>
</port>

</implements>
...

</component>

The link typejboss.system.EJBLink has propertyEJBObjectJNDI , which, in the current example, evaluates in
the context of thetarget port, that is, the implemented port of theItem component. The next XML snippet describes this
property:

<link type="jboss.system.EJBLink">
<property name=" EJBObjectJNDI ">

${EJBObjectJNDI@ targetPort }
</property>
...

</link>

Now when the property value has been propagated to the link namespace, the last step in the chain is achieved by the
following rule: if the property whose value is being evaluated is declared in the scope of a required port, and if the external
namespace matches the link type of the port, it is then a reference to the link property:

<component name="Catalog">
<requires>

<port name="PortToItem" type="Item"
link-type=" jboss.system.EJBLink ">

<property name=" EJBObjectJNDI ">
${EJBObjectJNDI@jboss.system.EJBLink }

</property>
</port>
...

</requires>
...

</component>

4.2 Component Replica Assembly Language

TheComponent (Replica) Assembly Languageis used for writing deployment (path) specification. This language allows for
the deployer to request that a replica of a given application component be deployed on a particular node and how its ports are

14

connected to ports of replicas of other components within the deployment specification. Only application components can
be assembled using the assembly language. This design choice is intentional in order to allow the application path planner to
focus only on application aspects of the path without worrying about system components needed to support correctness of the
application components’ operation. It is the role of the infrastructure to resolve dependencies of the application components
on system components, and subsequently to configure and deploy the required system components.

The deployer may choose to write the specification by hand, or to use the GUI deployment path editing tool. Figure 3
shows the GUI tool with a two-host distributed deployment of Java PetStore [23]. The following code snippet is an excerpt
from the path specification produced by the GUI tool for the sample Java PetStore distributed deployment. It shows that the
Cart component (withreplicaId being 93) is deployed on thehostB and is connected by a link replica to the
Catalog component (withreplicaId being 4) residing onhostA .

<replication-path path-id="...">
...
<component-replica replicaId =" 93">

<configuration>
<property key="name" value=" jps.Cart "/>
<property key="targetId" value=" hostB "/>
<port-configuration>

<property key="name" value="jps.Cart.InvocationPort"/>
</port-configuration>
<port-configuration>

<property key="linkType" value="jboss.system.EJBLink"/>
<property key="name" value="jps.Cart.PortToCatalog"/>

</port-configuration>
</configuration>

</component-replica>
<component-replica replicaId =" 4">
<configuration>

<property key="name" value=" jps.Catalog "/>
<property key="targetId" value=" hostA "/>

<port-configuration>
<property key="name" value="jps.Catalog.InvocationPort"/>

</port-configuration>
<port-configuration>

<property key="linkType"
value="jboss.system.jca.DataSourceLink"/>

<property key="name" value="jps.Catalog.PortToEstoreDS"/>
</port-configuration>

</configuration>
</component-replica>
<link-replica replicaId="157">

<configuration>
<property key="name" value="jboss.system.EJBLink"/>
<property key=" destinationEndpoint endpointId " value=" 4"/>
<property key=" destinationEndpoint endpointPortId"

value="jps.Catalog.InvocationPort"/>
<property key=" sourceEndpoint endpointId " value=" 93"/>
<property key=" sourceEndpoint endpointPortId"

value="jps.Cart.PortToCatalog"/>
</configuration>

</link-replica>
...

</replication-path>

15

4.3 Component Configuration Process

A deployment specification for an application path is a graph (with no cycles) of replicas of components connected via
directed links from required to implemented ports (directed acyclic graph).

The component configuration process (preparing deployment path) is aleaf-to-root, post-orderprocessing of the DAG.
Leaf replicas are ones that have no required ports and thus have no outgoing links. However, they may depend on system
components through the property value expression mechanism (section 4.1.7). So the algorithm in turn attempts resolution
of application component dependencies on system components and recursively, dependencies of newly discovered system
components on other system components. It then proceeds in the direction opposite to link direction. On this way, necessary
property values are propagated from a component scope to the scope of its implemented port, then to the link, then to the
required ports of the connected components, according to the property value propagation mechanism (section 4.1.8).

A replica in the graph is processed only after all component replicas that it connects to via its required ports are already
processed. When configuring a replica, the following order of property resolution within component scopes is adopted: (1)
component-wide scope, (2) implemented ports, (3) required ports. This means that component-wide scope will be filled
with resolved property-value pairs first, and only after that all properties for all implemented and required ports are resolved.
The order was chosen so that ports’ properties may rely on component-wide properties being configured, so as to use their
property values.

4.3.1 Component Reuse Algorithm

A component’s replica on a given node can be safely reused by multiple deployment paths if the same sequence of commu-
nications with the replica will result in the same application state. Replica reuse is an obvious optimization that allows for
decreased deployment overheads and consistency management. In the J2EE component model, a component is unaware of
any components that require it and the specification disallows component reference cycles, so all paths are graphs without cy-
cles. Moreover, in J2EE, any references to other components required by a given component must be set at this component’s
deploy time, so a component is configurable only at deploy time. The infrastructure adopts the following component reuse
algorithm, which is performed as a part of the preparing of an application deployment path, after component dependencies
have been resolved and all components’ properties have been evaluated.

Imagine a componentC with required ports labeled from1 to n. A replicaR1 of componentC deployed on nodeN can
be reused for a requested deployment of replicaR2 of C on nodeN , only if component replicasRQ1, . . . , RQn required
by R1 can be reused for corresponding component replicas required byR2. This would imply that if a component has no
required ports, then all replicas of this component deployed on the same node, would map to a single replica. This however
poses problems because a component’s semantic role in the application may depend not only on components it references but
on references to entities not modeled as components by the infrastructure. For example, a data source application component
has no required ports, however, it has properties that define database connection parameters that this data source component
uses to connect to the external RDBMS. So, even though two data sources for the same logical database may be deployed on
the same node, however the two datasources may be configured to communicate with two different RDBMSs (for example,
one with test data and one with production data). In order to handle such cases, we introduce the notion ofprimary component
property. Primary properties are usually the properties that need to be explicitly specified by the application deployer, such
as the database host name for a data source application component. So, an additional reusability condition is added: a
component replicaR1 can be reused for replicaR2 only if values of their primary properties are equal.

In fact, componentnameandtarget host idcan be treated as two implicit primary properties of any component replica.
So, the generalized reusability rule becomes:

Component replica R1 can be reused in place of component replica R2 only if primary property values
of these replicas are the same and subgraph of R1’s referenced component replicas can be reused in
place of R2’s corresponding subgraph.

Primary property values together with hashcodes of the components that this component connects to through its required
ports fully define unique id of the component.

5 Implementation

We implement the infrastructure as a part of the JBoss open source Java application server [11] and test it on several sample
J2EE applications – Java PetStore [23], RUBiS [20] and TPC-W-NYU [32]. The infrastructure implementation utilizes the

16

JBoss’s extendablemicro-kernelarchitecture, based on the JMX [27] specification.
All infrastructure nodes run an instance of JBoss application server. These JBoss instances are configured to start a

customAgent MBean, which serves as the infrastructure-controlled Agent Service (section 3, see also Fig. 2). The Agent
MBean plugs into JBoss deployment mechanism.

One master node runs a JBoss instance with theXmlBlaster Service, which acts as a persistence back-end, to store the
information of prepared application paths, deployed paths and current state of application and system component replica de-
ployments. XmlBlaster [34] is a Publish/Subscribe and Point-To-Point (PTP) Message-Oriented middleware (MOM) server,
which exchanges messages between publishers and subscribers. Messages are described with XML-encoded meta informa-
tion. A lot of features are supported, among them is a persistence support for messages. It is also equipped with the full text
search capabilities – subscribers can useregular expressionsor XPath [33] to filter the messages they wish to receive. Our
persistence and inter-node messaging is accomplished through XmlBlaster.

Any number of infrastructure nodes may serve as hosts to codebase and deployment generation services. This functional-
ity is encapsulated in a deployable Web application (J2EE WAR) –Deployer– serving as the Deployment Unit Factory Ser-
vice. It contains the codebases of the applications preregistered with the infrastructure, in the JAR format. An Agent MBean
requests the predefined Deployer for the deployable bundles for components and JBoss services scheduled for deployment on
its node. The Deployer queries the XmlBlaster storage back-end for the replica configurations, produces deployable bundles
and returns them back to the Agent, which in turn deploys them on the node in the order preserving component dependencies.

Often, replica configuration data obtained by the Deployer from the XmlBlaster backend is much smaller than the size
of a deployment bundle, which may include classfiles and other content. Therefore it is resonable to install the Deployer
service, which contains bulky codebases, close to network edges, so that it needs to obtain only small configuration data from
the (centralized) XmlBlaster back-end. Ideally, it should be the responsibility of the Agent to determine which Deployer is
closer to it.

As a part of the infrastructure, we have implemented a GUI tool serving as a Replication Management Service client.
With this tool, infrastructure users may:

• compose and edit application deployment path specifications for preregistered applications, rather than writing them
manually using the Component Replica Assembly Language;

• interact with the Replication Management Service for preparing, committing, deploying and removing application
deployment paths.

Figure 3 shows the GUI tool with a two-host distributed deployment of the Java PetStore [23] sample J2EE application.
The Replication Management Service should run as a JBoss service or as a stand-alone application. In the current imple-

mentation, it runs as an application bundled with the GUI tool, with theJava Event Notificationas the messaging mechanism
between them. However, their codebases are decoupled and all necessary support for other pluggable (remote) communica-
tion mechanisms is available. Our future plans include implementation of a JMX-based communication mechanisms between
the Replication Management Service and its clients (e.g., the GUI tool).

6 Related Work

Thedeploymentanddynamic reconfigurationof (distributed) applications has been the subject of extensive research in the
software engineering and distributed systems communities. In recent years increased attention was drawn to the deployment
and reconfiguration problems of component-based applications, as the emerged component frameworks such as CORBA
Component Model [18] and J2EE [25] matured. Research efforts in this direction can be vaguely divided into two camps. The
first [2, 13] try to construct a general model for a relatively broad class of systems, by identifying the required functionality for
dynamic reconfiguration, but rarely provide immediately applicable mechanisms for actual reconfiguration. The second [22,
3, 15] provide practical mechanisms for carrying out certain kinds of reconfigurations, but usually assume a specialized
system architecture to do so. The work presented in this paper belongs to the second category.

It was acknowledged thatcomponent dependenciesrepresent an important aspect of component-based systems, from
the fault-tolerance, performance, management and reconfiguration perspectives. In [13] authors present a generic model
of reifying dependencies in component systems. They identify two distinct kinds of dependencies: (1) requirements for
loading a component into the system (calledprerequisites), and (2)dynamic dependenciesbetween loaded components in
a running system.Component prerequisitesare further subdivided into the three categories: (a) thenatureof the hardware
resources the component needs, (b) thecapacityof the hardware resources it needs, and (c) the software services (such as

17

other components) itrequires. QoS specification languages and architecture description languages (ADL) are proposed to
express such specifications. To manage component’sdynamic dependencies, the authors introduce the notion ofcomponent
configurator, which is instantiated for each component and is responsible for storing the runtime dependencies between the
component and other system and application components. The component configurator for componentC keeps track of so-
calledhookedcomponents, i.e., components on whichC depends, andclient components, which themselves depend onC.
A flexible reconfiguration interface of component configurator allows for efficient management of component dependencies.

With regards to the generic dependency classification of [13], J2EE component model we are working with has only static
dependencies (a.k.a. prerequisites), which come as a specification of system and application components that are required
for a given component to execute. J2EE does not allow for dynamic reconfiguration of deployed components, so technically,
there is no need for a dynamic component configurator, and J2EE deployment descriptors are sufficient for describing static
deploy-time dependencies. In this work we do not address component hardware and QoS requirements at all, partly because
it lies beyond the scope of the J2EE specification. Also in the J2EE component model, application components that provide
services are typically unaware of their clients. The rationale for this awareness would be the ability to reconfigure clients in
case the server component has to be taken off-line or reconfigured, but since J2EE does not allow for dynamic reconfiguration,
client-awareness is not supported in J2EE.

Augmenting middleware with additional services that simplify the tasks performed by application developers, deploy-
ers and system administrators naturally follows the spirit of the middleware paradigm. Several previous studies proposed
mechanisms of dynamic application reconfiguration through component redeployment and implemented them as middleware
services. The work in [5, 6] proposed active monitoring and micro-reboots for fast automatic recovery and fault isolation.
Authors of [7] advocate the approach of running multiple versions of the component at the same time, to reliably upgrade the
system. The authors of [22] built a middleware service for atomic redeployment of EJB components across multiple servers.
Our work follows this path, by proposing an infrastructure that facilitates and automates dynamic component deployment
in distributed environments. However, this paper is different from the previous work in dynamic deployment and reconfig-
uration of component-based applications in that it specifically addresses the problem of efficiently expressing dependencies
of portable J2EE application components and connectors on services provided by the middleware. We are working strictly
within the constraints imposed by the J2EE programming model and do not propose extensions to the J2EE specification.

The variety of deployed components resulting from the usage of our infrastructure represents anapplication-level overlay
networkof J2EE components analogous to that of [2], [7], and [14], where several instances of the same component may
coexist together. We believe that J2EE limitations on component lifecycle, concurrency and state may allow for efficient
models of consistency between multiple versions of the same stateful J2EE component. The proposed infrastructure may
form a foundation for a tool for J2EEcomponent replication, analogous to the replication of CORBA components [16].
Replication of J2EE components can be used for different purposes, ranging from failover and increased availability to
differentiation of the service among several client groups.

Acknowledgments

This research was sponsored by DARPA agreements N66001-00-1-8920 and N66001-01-1-8929; by NSF grants CAREER:CCR-
9876128, CCR-9988176, and CCR-0312956; and Microsoft. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as representing the official policies or endorsements, either
expressed or implied, of DARPA, Rome Labs, SPAWAR SYSCEN, or the U.S. Government.

References

[1] Apache Software Foundation. Apache Geronimo Application Server.http://geronimo.apache.org/ .

[2] N. Arshad, D. Heimbigner, and A. L. Wolf. Deployment and dynamic reconfiguration planning for distributed software
systems. InProceedings of the 15th International Conference on Tools with Artificial Intelligence (ICTAI’03), November
2003.

[3] T. Batista and N. Rodriguez. Dynamic reconfiguration of component-based applications. InProceedings of the Inter-
national Symposium on Software Engineering for Parallel and Distributed Systems, June 2000.

18

[4] BEA Systems Inc. WebLogic Application Server.http://www.beasys.com/products/weblogic/ .

[5] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. JAGR: An autonomous self-recovering application server. In
Proceedings of the 5th International Workshop on Active Middleware Services, June 2003.

[6] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint: Problem determination in large, dynamic, Internet
services. InProceedings of the International Conference on Dependable Systems and Networks, June 2002.

[7] J. E. Cook and J. A. Dage. Highly reliable upgrading of components. InProceedings of the 21st International Confer-
ence on Software Engineering (ICSE’99), May 1999.

[8] M. Fleury and F. Reverbel. The JBoss extensible server. InProceedings of the ACM/IFIP/USENIX International
Middleware Conference (Middleware’2003), June 2003.

[9] IBM Corporation. WebSphere Application Server.http://www.ibm.com/software/websphere/ .

[10] Java Community Process.Java Specification Request 88 (JSR88).http://www.jcp.org/en/jsr/
detail?id=88 .

[11] JBoss Group. JBoss Application Server.http://www.jboss.org .

[12] T. Kichkaylo, A. Ivan, and V. Karamcheti. Constrained component deployment in wide-area networks using AI planning
techniques. InProceedings of the International Parallel and Distributed Processing Symposium (IPDPS), April 2003.

[13] F. Kon and R. H. Campbell. Dependence management in component-based distributed systems.IEEE Concurrency,
8(1):26–36, 2000.

[14] D. Llambiri, A. Totok, and V. Karamcheti. Efficiently distributing component-based applications across wide-area
environments. InProceedings of the International Conference on Distributed Computing Systems (ICDCS), pages
412–421, May 2003.

[15] J. Magee, A. Tseng, and J. Kramer. Composing distributed objects in CORBA. InProceedings of the Third International
Symposium on Autonomous Decentralized Systems (ISADS’97), pages 257–263, 1997.

[16] V. Marangozova and D. Hagimont. An infrastructure for CORBA component replication. InProceedings of the
IFIP/ACM Working Conference on Component Deployment, pages 257–263, 2002.

[17] Microsoft Corporation.Microsoft .NET.http://www.microsoft.com/net/ .

[18] Object Management Group. CORBA Component Model (CCM) Specification.
http://www.omg.org/technology/documents/formal/components.htm .

[19] ObjectWeb Consortium. JOnAS Application Server.http://jonas.objectweb.org/ .

[20] ObjectWeb Consortium. RUBiS: Rice University Bidding System.http://rubis.objectweb.org/ .

[21] Oracle Corporation. Oracle Application Server.http://www.oracle.com/appserver/ .

[22] M. Rutherford, K. Anderson, A. Carzaniga, D. Heimbigner, and A. L. Wolf. Reconfiguration in the Enterprise JavaBean
component model. InProceedings of the IFIP/ACM Working Conference on Component Deployment, pages 67–81,
2002.

[23] Sun Microsystems Inc. Java Pet Store Sample Application.http://java.sun.com/developer/releases/
petstore/ .

[24] Sun Microsystems Inc.Enterprise JavaBeans (EJB) Specification.http://java.sun.com/products/ejb/ .

[25] Sun Microsystems Inc.Java 2 Enterprise Edition.http://java.sun.com/j2ee/ .

[26] Sun Microsystems Inc.Java Connector Architecture (JCA) Specification.http://java.sun.com/j2ee/
connector/ .

19

[27] Sun Microsystems Inc.Java Management Extensions (JMX) Specification.http://java.sun.com/
products/JavaManagement/ .

[28] Sun Microsystems Inc.Java Naming and Directory Interface (JNDI) Specification.http://java.sun.com/
products/jndi/ .

[29] Sun Microsystems Inc.Java Server Pages (JSP) Specification.http://java.sun.com/products/jsp/ .

[30] Sun Microsystems Inc.Java Servlets Specification.http://java.sun.com/products/servlet/ .

[31] C. Szyperski.Component Software. Addison-Wesley, November 2002.

[32] TPC-W-NYU. A J2EE implementation of the TPC-W benchmark.http://cs1.cs.nyu.edu/ ∼totok/
professional/software/tpcw/tpcw.html .

[33] World Wide Web Consortium.XML Path Language (XPath) Specification.http://www.w3.org/TR/xpath .

[34] XmlBlaster Open Source Project.http://www.xmlblaster.org/ .

20

